Types: N/A
Examples: N/A
Constructions: 5.7 Cosine Formula for Inner Product
Generalizations: N/A

Properties: N/A
Sufficiencies: 5.5 Pythagorean Theorem
Questions: N/A

Law of Cosines

Let a,b,c be positive real numbers representing the length of the three sides of any triangle. Let θ be the angle opposite the side length of c and between the sides of lengths a and b. Then,

c2=a2+b22abcos(θ)

\begin{proof}Let's break the theorem statement into two cases:

  1. The Acute Case (0<θ<π2)

⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠

Text Elements

Embedded files

9dc03aef1bd9be767817c5d11f87ea50ba1ebf2d: θ
c698f5c42cefbd2ac7b5c8969549ee89068b5bfb: b
5819e66fe6437fb7757e7b6f3a7463b0c0f1ddd7: x
7f48413a83c3587e255b2ad1eaf331ce65187901: ax
33c1ac43d1fce37257312ff93de2bcce95e366c3: c
70ee5b828338e6639bda4ef94af6041c620e91f5: h
7a2958810c301cd73bd698adad7ea9af703d578c: θ
0a1fb8e43a34c50c96da6b3cbd419fca1f05ac00: b
43c0d15551f72b91e67f3ac64a8e61dd762b7fbe: x
4b5749a4ad00913a3436bcac4a6b68225d531b1c: ax
605e2242cde1e023beb6525ee5db9ebd32a4330f: h
648399c5d1d86dca1e07f315edc46826689375c9: c

In this case, we have x2+h2=b2. Further, we see:

c2=(ax)2+h2=a22ax+x2+h2=a22ax+b2

Take a look at the right triangle on the left.

cosθ=xbbcosθ=x

If we sub in bcosθ for x into our formula for c2, we get

a2+b22abcosθ

which is what we wanted to show.

  1. The Obtuse Case (π2<θ<π)

500

⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠

Text Elements

Embedded files

9dc03aef1bd9be767817c5d11f87ea50ba1ebf2d: θ
c698f5c42cefbd2ac7b5c8969549ee89068b5bfb: b
5819e66fe6437fb7757e7b6f3a7463b0c0f1ddd7: x
7f48413a83c3587e255b2ad1eaf331ce65187901: ax
33c1ac43d1fce37257312ff93de2bcce95e366c3: c
70ee5b828338e6639bda4ef94af6041c620e91f5: h
7a2958810c301cd73bd698adad7ea9af703d578c: θ
0a1fb8e43a34c50c96da6b3cbd419fca1f05ac00: b
43c0d15551f72b91e67f3ac64a8e61dd762b7fbe: x
4b5749a4ad00913a3436bcac4a6b68225d531b1c: ax
605e2242cde1e023beb6525ee5db9ebd32a4330f: h
648399c5d1d86dca1e07f315edc46826689375c9: c

Again, we have x2+h2=b2 on the left triangle. On the triangle to the right of h, we see:

c2=(ax)2+h2=a22ax+x2+h2=a22ax+b2

Let's look at the triangle on the left again.

cosθ=xbbcosθ=x

Therefore,

c2=a22abcosθ+b2=a2+b22abcosθ

\end{proof}